SRIKANT BHARADWAJ Ph.D.

+1-470-775-6738 | srikantvv@gmail.com | srikantbharadwaj.github.io/

in srikantvv | 💽 Google Scholar: Srikant | 🤉 Justia Patents: Srikant

Redmond, WA, 98005, USA

Systems researcher with 9 years of industrial experience in the field of GPU architecture, high-performance computing, machine learning, and quantum computing.

PROFESSIONAL EXPERIENCE

Microsoft

Principal Researcher

Redmond, WA, USA Dec 2024 - Present

Apr 2022 - Nov 2024

Bellevue, WA, USA

Feb 2018 - Apr 2022

- Leading a team on innovation in hardware-software codesign for efficient artificial intelligence.
- Managing and mentoring research fellows and interns, fostering their professional development.

Senior Researcher

- Developed novel attention execution technique which improves hardware utilization in large language model inference resulting in 15% reduction in yearly costs.
- Collaborated with multiple teams to enable a holistic benchmarking guideline for external silicon vendors.
- Published several research papers and patents in key novel techniques to improve efficiency of machine learning workloads.
- Managed and mentored interns, cultivating essential research methodologies and publishing skills.

Advanced Micro Devices (AMD)

Senior Silicon Design Researcher

- Conducted research in architecting GPUs, CPUs, and accelerators for high-performance computing used for scientific computing and machine learning workloads.
- Transferred research technology to the development of fastest supercomputers, Frontier (ORNL) and El Capitan (LLNL).
- Developed quantum and cryogenic software/firmware support infrastructure for AMD CPUs and GPUs.
- Designed and developed detailed interconnect models for accurate and high-fidelity simulations (Open sourced as gem5).
- Earned Spotlight Awards for contributions to internal GPU power modelling infrastructure.

Apple Intern - iOS GPU Architecture • Designed a tracking scheme for GPU kernel crashes in iPhones and iPads during heavy graphics usages.

· Architected software-based mechanism which improves productivity of engineers when fixing remote problems occurring during the usage of commercial devices.

Nvidia

ASIC Engineer II

Bangalore, India

Cupertino, CA, USA

May 2017 - Aug 2017

Jan 2016 - Jun 2016

- Designed and implemented the client-side support for VCS Save restore mechanism for integrated GPU in Tegra which saved 78% of test run times.
- Contributed with a software team to upgrade a software based headless (no-CPU) full chip testing system for Tegra chips which simulate CPU+GPU full chip tests.

Oracle

Associate Software Engineer

- Designed and implemented a way to import virtualized operating system instances into a cluster.
- Researched timings of server failure by creating an algorithm for convergence of server down times.

ST Microelectronics

Intern

- Developed a simulation environment for the subsystem using Specman e and Verilog.
- Analyzed the RTL regression results and used HDL code coverage and functional coverage to measure the exhaustiveness.

Bangalore, India

Jul 2014 - Jan 2016

Delhi, India Jan 2014 - Jul 2014

EDUCATION	
Georgia Institute of Technology	Atlanta, GA, USA
Ph.D.	Aug 2020 - Dec 2023
• GPA: 4.00/4.00	
 Thesis: Heterogeneous Network-on-Chip Architectures for GPUs 	
Georgia Institute of Technology	Atlanta, GA, USA
<i>M.S.</i>	Aug 2016 - Dec 2017
• GPA: 4.00/4.00	
 Thesis: Scalable Translation Lookup Buffer Architectures 	
Birla Institute of Technology and Sciences	Hyderabad, India
B.E.	Aug 2010 - Jul 2014
• GPA: 8.32/10.00	
 Thesis: Organic Photovoltaics 	

BOOKS

Interconnect Modeling for Homogeneous and Heterogeneous Multiprocessors Srikant Bharadwaj, Tushar Krishna Springer SELECTED PUBLICATIONS (CITATIONS = 540) C=CONFERENCE, J=JOUR

C=Conference, J=Journal, T=Thesis, S=In Submission

2022

- [C.1] Bharadwaj, S., Cox, G., Krishna, T., Bhattacharjee, A.. Scalable Distributed Shared Last-Level TLBs Using Low-Latency Interconnects. In *Proceedings of the International Symposium on Microarchitecture (MICRO)*, 2018.
- **[C.2]** Alsop, J., Sinclair, M., Bharadwaj, S., et al. **Optimizing GPU Cache Policies for Machine Learning Workloads**. In *IEEE International Symposium on Workload Characterization (IISWC)*, 2019.
- [C.3] Bharadwaj, S., Yin, J., Beckmann, B., Krishna, T. Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling. In *Proceedings of the Design Automation Conference (DAC)*, 2020.
- [J.1] Lowe-Power, J., Bharadwaj, S., et al. The gem5 simulator: Version 20.0+. arXiv, 2020.
- [J.2] Resch, S., Gutierrez, A., Bharadwaj, S., Eckert, Y., Oskin, M., Loh, G. Accelerating Variational Quantum Algorithms Using Circuit Concurrency. In *arxiv*, 2021.
- [C.4] Bharadwaj, S., Das, S., Eckert, Y., Oskin, M., Krishna, T. DUB: Dynamic Underclocking and Bypassing in Network-on-Chip for Heterogeneous GPU Workloads. In IEEE/ACM International Symposium on Networks-on-Chip (NOCS), 2021.
- [C.5] Bharadwaj, S., Das, S., Beckmann, B., Mazumdar, K., Kosonocky, S. Predict; Don't React for Enabling Efficient Fine-Grain DVFS in GPUs. In rchitectural Support for Programming Languages and Operating Systems (ASPLOS), 2024.
- [C.6] Sanovar, R., Bharadwaj, S., St. Amant, R., Rühle, V., Rajmohan, S. Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers. In Proceedings of Machine Learning and Systems (MLSys), 2025.
- [J.3] Bharadwaj, S., BR, S., Kumar, M. (2016). Importing a zone into zone-cluster configuration. In Oracle Yearly *Proceedings*.
- [J.4] Kang, H., Bharadwaj, S., Hensman, J., Krishna, T., Ruhle, V., Rajmohan, S. TurboAttention: Efficient Attention Approximation For High Throughputs LLMs. *arXiv*, 2024.
- [C.7] Bharadwaj, S., Krishna, T. InC2: Design of Interconnection Systems for Composable Chiplet Architectures. In *IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc)*, 2024.
- [S.1] Chen, Y., Xia, M., Gong, W., Mallick, A., Bharadwaj, S., Jazbec, M., Siddiqui, S. A., Weller, A., Rühle, V. Semi-autoregressive Decoding for Efficient LLM Inference. In International Conference on Learning Representations (ICLR), 2025.
- **[S.2]** Ruttenberg, M., Bharadwaj, S., Gutierrez, A., Eckert, Y., Oskin, M. Application-Aware Reconfiguration of High Bandwidth Memory in GPUs. In *Proceedings of the International Symposium on Computer Architecture (ISCA)*, 2025.
- **[T.1]** Bharadwaj, S. Scaling Address Translation in multi-core architectures. Georgia Institute of Technology Thesis, 2017.
- [T.2] Bharadwaj, S. Design of High-Performance and Energy-Efficient Interconnection Systems for Heterogeneous Multi-Chiplet Graphics Processing Units. Georgia Institute of Technology Thesis, 2023.

- [G.1] Bharadwaj, S., Das, S. Routing Flits in a Network-on-Chip based on Operating States of Routers. Patent Application No.: 16/188900.
- [G.2] Bharadwaj, S. Credit Based Flow Control Mechanism for Use in Multiple Link Width Interconnect Systems. Patent Application No.: 16/271371.
- [G.3] Bharadwaj, S. Packet router with virtual channel hop buffer control.
- [G.4] Gutierrez, A. T., Resch, S., Eckert, Y., Loh, G. H., Oskin, M. H., Bharadwaj, S. Quantum circuit mapping for multi-programmed quantum computers.
- [G.5] Bharadwaj, S. Dynamic Voltage Frequency Scaling Based on Active Memory Barriers. Patent Application No.: 16/425414.
- [G.6] Gutierrez, A. T., Sangaiah, K. R., Bharadwaj, S. VLIW power management.
- [F.1] Bharadwaj, S., et al. Compiler Directed Fine-Grained Power Management. Patent Application No.: 17/033000.
- **[F.2]** Bharadwaj, S., et al. **Dynamically configurable overprovisioned microprocessor**. Patent Application No.: 17/037727.
- [F.3] Shridhar, U., Ruehle, V. J., Bharadwaj, S. Fine-Grained Selective Quantization to Maximize Hardware Resource Utilization.
- [F.4] Bharadwaj, S., et al. Application aware dynamic tuning of DRAM parameters by leveraging thermal headroom.
- [F.5] Ganapathy, S., Eckert, Y., Gutierrez, A., Sangaiah, K. R., Bharadwaj, S. Using chiplet-level performance information for configuring chiplets in a processor.
- [F.6] Ruttenberg, M., Bharadwaj, S., Eckert, Y., Oskin, M. H., Gutierrez, A. Workload based tuning of memory timing parameters.
- [F.7] Resch, S., Gutierrez, A., Eckert, Y., Bharadwaj, S., Oskin, M. H. Running Instances of a Quantum Program Concurrently on a Quantum Processor.
- [F.12] Srikanth, S., Sangaiah, K. R., Gutierrez, A. T., Bharadwaj, S., Kalamatianos, J. VLIW Dynamic Communication.
- **[F.8]** Silva Tavares, J. A., Das, M., Ruehle, V. J., Bharadwaj, S. Adaptation of task performable by pre-trained model into parallel hardware.
- [F.9] Ruttenberg, M., Bharadwaj, S., Eckert, Y., Gutierrez, A., Oskin, M. H. Distribution of data and memory timing parameters across memory modules based on memory access patterns.
- [F.10] Sanovar, R., Ruehle, V., Bharadwaj, S. Hardware-aware attention mechanism with dynamic workload distribution for transformer models.
- [F.11] Ehrett, W. P., Gutierrez, A., Bharadwaj, S., Sangaiah, K. R., Shukla, P., Srikanth, S., Dasika, G., Kalamatianos, J. Semiconductor device for performing data reduction for processing arrays.

PROFESSIONAL SERVICE

Reviewer

Conferences and Journals

- Submission Chair: ISCA 2023 Industry Track
- Conference Reviewer: HPCA 2025, MASCOTS 2019, ICCD 2023, MICRO 2024, ISCA 2024, ASSYST 2023, SCOPE 2025
- Journal Reviewer: Transactions on Computers
- Artifact Evaluator: ISCA 2023
- \circ Reviewed and evaluated more than 40 research papers.
- Open source Contributions
 - \circ Maintainer of gem5, the most popular computer architecture simulator.
 - Open sourced HeteroGarnet, an interconnection system simulator, used by several industry and academic research laboratories.
 - · Active contributor of Microsoft's ONNX runtime.

SELECTED ACADEMIC PROJECTS

Intel GPU Architecture Analytical Modelling

 Tools: OpenCL, CPU+GPU Systems
 Advisor: Dr. Hyesoon Kim, Georgia Institute of Technology

2016

2014

- Investigating architecture for analyzing performance bottlenecks of parallel applications in CPU + GPU systems
- Developing an analytical model for estimating the execution time of massive parallel programs
- \circ Developing micro-benchmarks in OpenCL to be used for ensuring accuracy in the analytical model

Digital String Tuner

- Tools: Piccolo Microcontroller
 Funded by Texas Instruments for Analog Design Competition

 Designed and implemented a standalone guitar tuner using Piccolo Microcontroller
- Reached the pre-final round of the contest and was shortlisted in the top innovative designs

HONORS AND AWARDS

 Academic Performance Scholarship Angiras Foundation, USA Received scholarship in recognition of outstanding academic achievements 	2011
 Rookie of the Year Nomination Oracle Nominated for co-implementing a method to import instances of running Solaris instances to another cluster 	2014
 Spotlight Award AMD Recognized for significant contributions to internal GPU power modelling infrastructure. 	2019
 Spotlight Award AMD Recognized for developing a novel firmware technique to reduce power utilization in processing-in-memory architecture. 	2021

REFERENCES

1. Dr. Tushar Krishna

Associate Professor Georgia Institute of Technology Email: tushar@ece.gatech.edu *Relationship: PhD Advisor*

2. Dr. Matthew Sinclair

Assistant Professor University of Wisconsin-Madison Email: sinclair@cs.wisc.edu *Relationship: Research Collaborator*